

Welcome to py-emit’s documentation!

Contents:

	py-emit
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage
	step 1. Import pyemit

	step 2. Register events

	step 3. Start the message pumping

	step 4. Fire and consume events

	Troubeshooting

	Advanced topic
	RPC call

	stop the message pump

	pyemit
	pyemit package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2020-04-23)

	0.3.0 (2020-04-25)

	0.4.0 (2020-04-30)

	0.4.5 (2020-06-15)

	0.4.6 (2021-12-28)

	0.4.7 (2021-12-29)

	0.4.8 (2021-12-29)

	0.5.0 (2021-12-30)

Indices and tables

	Index

	Module Index

	Search Page

py-emit

[image: _images/pyemit.svg]
 [https://pypi.python.org/pypi/pyemit][image: _images/pyemit1.svg]
 [https://travis-ci.com/zillionare/pyemit][image: Documentation Status]
 [https://pyemit.readthedocs.io/en/latest/?badge=latest][image: _images/badge.svg]
 [https://codecov.io/gh/zillionare/pyemit]
	light-weight asynchronous event system, support in-process communication, remote message server (currently redis

	only) communication and remote procedure call (RPC).

	Free software: MIT license

	Documentation: https://pyemit.readthedocs.io.

Features

	asynchronous support.

	support in-process communication

	support remote message server (currently redis, aioredis is required)

	RPC (Remote procedure call)

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install py-emit, run this command in your terminal:

$ pip install pyemit

This is the preferred method to install py-emit, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for py-emit can be downloaded from the Github repo [https://github.com/zillionare/pyemit].

You can either clone the public repository:

$ git clone git://github.com/zillionare/pyemit

Or download the tarball [https://github.com/zillionare/pyemit/tarball/master]:

$ curl -OJL https://github.com/zillionare/pyemit/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use py-emit in a project

step 1. Import pyemit

from pyemit import emit

step 2. Register events

pyemit provides both annotation based registering and direct registering. Annotation can be used if the handler is
not a class method.

Be noticed that the handler MUST be a coroutine function.

from pyemit import emit
@emit.on('event_name')
async def handler(msg):
 pass

or, if it’s a class method, use emit.register instead:

from pyemit import emit
class Foo:
 async def bar(self, msg):
 pass

foo = Foo()
emit.register('event_name', foo.bar)

To know what causes the difference, please refer to $todo

step 3. Start the message pumping

you can start a local message pump by:

from pyemit import emit
async def init():
 await emit.start()

Or, if you’re prefer a remote message server, use this:

from pyemit import emit
aioredis is required. You can install it by running `pip install aioredis>=1.3.1
async def init(dsn):
 await emit.start(emit.Engine.REDIS, dsn=dsn)

step 4. Fire and consume events

Now you can fire and consume events. To emit a message, running:

from pyemit import emit
async def foo():
 # construct msg
 msg = {}
 await emit.emit('event_name', msg)

You can fire an event without providing any message. By doing so, be sure provide no parameter to the handler. The
msg must be and dict and is json serializable.

Troubeshooting

You can enable heartbeat when using REDIS engine:

from pyemit import emit
async def init(dsn):
 await emit.start(emit.Engine.REDIS, dsn=dsn, heart_beat=1)

and set logging level to DEBUG, this should print a heart beat msg every 1 second. If not seen, then check your
configurations and Redis setup.

Advanced topic

RPC call

from pyemit import emit as e
from pyemit.remote import Remote

class Sum(Remote):
 def __init__(self, to_be_sum):
 super().__init__()
 self.to_be_sum = to_be_sum

 async def server_impl(self, *args, **kwargs):
 result = sum(self.to_be_sum)
 await super().respond(result)

async def test_rpc():
 await e.start(e.Engine.REDIS, dsn="redis://localhost")
 foo = Sum([0, 1, 2])
 response = await foo.invoke()
 assert response == 3

step 1. Subclass from Remote, and implement Remote.server_impl method. This one is supposed to be executed on
the server side. When calculation is done, then call super().respond() to send the result back to client

step 2. At client side, create instance of the subclass you defined (i.e., foo in the example), then by calling
await foo.invoke() you will get what you want.

pass parameters during construct of Remote object if any, they can be access at server side by self object.

stop the message pump

call emit.stop to stop the whole machine. call emit.unsubscribe to remove a handler.

pyemit

	pyemit package
	Submodules

	pyemit.emit module

	pyemit.remote module

	Module contents

pyemit package

Submodules

pyemit.emit module

	
class pyemit.emit.Engine

	Bases: enum.IntEnum

An enumeration.

	
IN_PROCESS = 0

	

	
REDIS = 1

	

	
pyemit.emit.async_register(event: str, handler: Callable, exchange='')

	异步地将一个`handler`注册到事件`event`的处理器队列中。
:param event:
:param handler:
:param exchange:
:return:

	
pyemit.emit.emit(channel: str, message: Any = None, exchange='')

	publish a message to channel.
:param channel: the name of channel
:param message:
:return:

	
pyemit.emit.on(event, exchange='')

	提供了消息注册的装饰器实现
Args:

event:
exchange:

Returns:

	
pyemit.emit.register(event: str, handler: Callable, exchange='')

	为`event`注册一个事件处理器。如果
:param event:
:param handler:
:param exchange:
:return:

	
pyemit.emit.rpc_respond(msg: dict)

	

	
pyemit.emit.rpc_send(remote) → Any

	emit msg and wait response back. The func will add __emit_sn__ to the dict, and the server should echo the serial
number
back.
Args:

remote:

Returns:

	
pyemit.emit.start(engine: pyemit.emit.Engine = <Engine.IN_PROCESS: 0>, start_server=False, heart_beat=0, **kwargs)

	
	Args:

	engine:
start_server:
heart_beat:

	
pyemit.emit.stop()

	显式地关闭与redis的连接，释放资源

	
pyemit.emit.unsubscribe(channel: str, handler: Callable, exchange='')

	stop subscribe message from channel
:param channel:
:param handler:
:return:

pyemit.remote module

Author: Aaron-Yang [code@jieyu.ai]
Contributors:

	
class pyemit.remote.Remote(timeout=10)

	Bases: object

	
invoke()

	

	
static loads(s) → pyemit.remote.Remote

	

	
respond(result: Any)

	

	
server_impl()

	

	
sn

	

	
timeout

	

Module contents

Top-level package for py-emit.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/zillionare/pyemit/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

py-emit could always use more documentation, whether as part of the
official py-emit docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/zillionare/pyemit/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pyemit for local development.

	Fork the pyemit repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pyemit.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pyemit
$ cd pyemit/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 pyemit tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/zillionare/pyemit/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_pyemit

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Aaron Yang <aaron_yang@jieyu.ai>

Contributors

None yet. Why not be the first?

History

0.1.0 (2020-04-23)

	First release on PyPI.

0.3.0 (2020-04-25)

	RPC feature implemented

	use pickle instead of json for serialization for better performance. Currently protocol 4 is used.

0.4.0 (2020-04-30)

	Change signature of Remote.execute to Remote.invoke

0.4.5 (2020-06-15)

	fixed #1

0.4.6 (2021-12-28)

	Fixed that the stop method did not empty hannlers

0.4.7 (2021-12-29)

	Fixed that the stop method did not empty hannlers, then add function error

0.4.8 (2021-12-29)

	Add asynchronous registration

0.5.0 (2021-12-30)

	Update aioredis version to 2.0.1

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyemit	

 	
 	
 pyemit.emit	

 	
 	
 pyemit.remote	

Index

 A
 | E
 | I
 | L
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	async_register() (in module pyemit.emit)

E

 	
 	emit() (in module pyemit.emit)

 	
 	Engine (class in pyemit.emit)

I

 	
 	IN_PROCESS (pyemit.emit.Engine attribute)

 	
 	invoke() (pyemit.remote.Remote method)

L

 	
 	loads() (pyemit.remote.Remote static method)

O

 	
 	on() (in module pyemit.emit)

P

 	
 	pyemit (module)

 	
 	pyemit.emit (module)

 	pyemit.remote (module)

R

 	
 	REDIS (pyemit.emit.Engine attribute)

 	register() (in module pyemit.emit)

 	Remote (class in pyemit.remote)

 	
 	respond() (pyemit.remote.Remote method)

 	rpc_respond() (in module pyemit.emit)

 	rpc_send() (in module pyemit.emit)

S

 	
 	server_impl() (pyemit.remote.Remote method)

 	sn (pyemit.remote.Remote attribute)

 	
 	start() (in module pyemit.emit)

 	stop() (in module pyemit.emit)

T

 	
 	timeout (pyemit.remote.Remote attribute)

U

 	
 	unsubscribe() (in module pyemit.emit)

Frequently asked questions

Q1. Why design Emit.on as decorator to bind event and it’s handler, which sounds more nature?

A1. It’s very hard to design such a decorator, while both plain python function or class member method could be decorated. Consider the following example:

	1
2
3
4

	class Foo():
 @on('default', 'say_hi')
 async def foo(self, msg):
 print(msg)

The major task of on as a decorator is, to bind handler (Foo.foo()) , channel ‘say_hi’ to exchange ‘default’. In most occasions, when the decorator (@on) is executed, we don’t know if the exchange ‘default’ is instantiated and where the object is. This is not the hardest part yet. The most hard part is, decorator on will NEVER know which Foo object should the handler (Foo.foo()) should bound to, because most likely, Foo is not instantiated yet. Event though, there’s no way for decorator to get the handle of the instantiated object. All things a decorator can got, is arguments (belongs to itself) and the function object to be decorated.

Q2. What type of msg can be pass through?
A2. Any objects that can be json serialized

Introduction

Features

A light way for python to fire and consume events.

	support both in-process and message-server (REDIS for the moment), so if one choose use REDIS as the engine, fire event can communicate inter-process.

	support multiple message queue(Exchange) by creating multiple Emit instance.

	simple APIs, just on (to bind event and its handler), emit(to fire an event), and start (the start the engine)

How Emit works?

First of wall, you register events and its handler by using Emit.on(), then your start the Emit exchange. Emit will create communication channels under the hood, and bind channel name, handler to the channel.

All these information are stored at the exchange (A Emit instance). When the under layer communication channel received information, Emit find the handler according to the registry, then invoke handler with received data.

Each channel(event) may have one or more handler bound, they will be called by the order they’re registered.

Now you fire an event. The event will go to either an asyncio queue, or redis server, and be bounced back to bounded channels, which are created by Emit.bind_channel() previously, and your events(messages) will be put into these channels, with each queue, we’ll have an asyncio task Emit.receiver() to dispacth events to bounded handlers.

when you need to shutdown a channel, send a None to this channel.

To shutdown the exchange itself, please call Emit.stop().

 Python seems lack of some common building blocks, like convenient config (auto-reload without restart, overriding), in-process event emit and catch mechanism, and etc.

The name py-commons-xxx is inspired by java open source packages – apache.commons.

py-commons-config

Features

	support dev, deployment and test environment

	auto-reload if config file changed

	use cfg.settingx.settingy to access config instead of cfg[“settingsx”][“settingsy”]

py-commons-emit

Features

A light way for python to fire and consume events.

	support both in-process and message-server (REDIS for the moment), so if one choose use REDIS as the engine, fire event can communicate inter-process.

	support multiple message queue(Exchange) by creating multiple Emit instance.

	easy to use, just on (to bind event and its handler), emit(to fire an event), and start (the start the engine)

py-commons-async-wrapper

Features

	turn obsolete blocking call into asynchronous call, so they can be used with asyncio

How to use?

You can use Emit in 5 steps:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	from emit import Emit, Engine

async def on_say_hi(msg):
 print(f"{msg} from py-commons-emit!")

1. instantiate Emit exchange
async def test():
 f = Emit("default")

 # 2. register events and its handler
 await sf.on('say_hi', on_say_hi)

 # 3. start the engine
 await f.start(Engine.IN_PROCESS)

 # or use redis as engine
 # await f.start(Engine.REDIS, dsn="redis://127.0.0.1:6379")

 # 4. emit the event
 await f.emit('say_hi', 'greetings')

5. Now you should get 'greetings from py-commons-emit!' in on_say_hi function.
asyncio.get_event_loop().run_until_complete(test())

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to py-emit’s documentation!

 		
 py-emit

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 step 1. Import pyemit

 		
 step 2. Register events

 		
 step 3. Start the message pumping

 		
 step 4. Fire and consume events

 		
 Troubeshooting

 		
 Advanced topic

 		
 RPC call

 		
 stop the message pump

 		
 pyemit

 		
 pyemit package

 		
 Submodules

 		
 pyemit.emit module

 		
 pyemit.remote module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2020-04-23)

 		
 0.3.0 (2020-04-25)

 		
 0.4.0 (2020-04-30)

 		
 0.4.5 (2020-06-15)

 		
 0.4.6 (2021-12-28)

 		
 0.4.7 (2021-12-29)

 		
 0.4.8 (2021-12-29)

 		
 0.5.0 (2021-12-30)

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

